Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38234755

RESUMO

Simultaneous multi-slice (multiband) acceleration in fMRI has become widespread, but may be affected by novel forms of signal artifact. Here, we demonstrate a previously unreported artifact manifesting as a shared signal between simultaneously acquired slices in all resting-state and task-based multiband fMRI datasets we investigated, including publicly available consortium data from the Human Connectome Project (HCP) and Adolescent Brain Cognitive Development (ABCD) Study. We propose Multiband Artifact Regression in Simultaneous Slices (MARSS), a regression-based detection and correction technique that successfully mitigates this shared signal in unprocessed data. We demonstrate that the signal isolated by MARSS correction is likely non-neural, appearing stronger in neurovasculature than grey matter. Additionally, we evaluate MARSS both against and in tandem with sICA+FIX denoising, which is implemented in HCP resting-state data, to show that MARSS mitigates residual artifact signal that is not modeled by sICA+FIX. MARSS correction leads to study-wide increases in signal-to-noise ratio, decreases in cortical coefficient of variation, and mitigation of systematic artefactual spatial patterns in participant-level task betas. Finally, MARSS correction has substantive effects on second-level t-statistics in analyses of task-evoked activation. We recommend that investigators apply MARSS to all multiband fMRI datasets with moderate or higher acceleration factors.

2.
Biol Psychiatry Glob Open Sci ; 3(4): 990-1002, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37881571

RESUMO

Background: Schizophrenia (SCZ) is marked by working memory (WM) deficits, which predict poor functional outcome. While most functional magnetic resonance imaging studies of WM in SCZ have focused on the dorsolateral prefrontal cortex (PFC), some recent work suggests that the medial PFC (mPFC) may play a role. We investigated whether task-evoked mPFC deactivation is associated with WM performance and whether it mediates deficits in SCZ. In addition, we investigated associations between mPFC deactivation and cortical dopamine release. Methods: Patients with SCZ (n = 41) and healthy control participants (HCs) (n = 40) performed a visual object n-back task during functional magnetic resonance imaging. Dopamine release capacity in mPFC was quantified with [11C]FLB457 in a subset of participants (9 SCZ, 14 HCs) using an amphetamine challenge. Correlations between task-evoked deactivation and performance were assessed in mPFC and dorsolateral PFC masks and were further examined for relationships with diagnosis and dopamine release. Results: mPFC deactivation was associated with WM task performance, but dorsolateral PFC activation was not. Deactivation in the mPFC was reduced in patients with SCZ relative to HCs and mediated the relationship between diagnosis and WM performance. In addition, mPFC deactivation was significantly and inversely associated with dopamine release capacity across groups and in HCs alone, but not in patients. Conclusions: Reduced WM task-evoked mPFC deactivation is a mediator of, and potential substrate for, WM impairment in SCZ, although our study design does not rule out the possibility that these findings could relate to cognition in general rather than WM specifically. We further present preliminary evidence of an inverse association between deactivation during WM tasks and dopamine release capacity in the mPFC.

3.
Neuroimage ; 249: 118907, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35033673

RESUMO

Simultaneous multi-slice (multiband) accelerated functional magnetic resonance imaging (fMRI) provides dramatically improved temporal and spatial resolution for resting-state functional connectivity (RSFC) studies of the human brain in health and disease. However, multiband acceleration also poses unique challenges for denoising of subject motion induced data artifacts, the presence of which is a major confound in RSFC research that substantively diminishes reliability and reproducibility. We comprehensively evaluated existing and novel approaches to volume censoring-based motion denoising in the Human Connectome Project (HCP) dataset. We show that assumptions underlying common metrics for evaluating motion denoising pipelines, especially those based on quality control-functional connectivity (QC-FC) correlations and differences between high- and low-motion participants, are problematic, and appear to be inappropriate in their current widespread use as indicators of comparative pipeline performance and as targets for investigators to use when tuning pipelines for their own datasets. We further develop two new quantitative metrics that are instead agnostic to QC-FC correlations and other measures that rely upon the null assumption that no true relationships exist between trait measures of subject motion and functional connectivity, and demonstrate their use as benchmarks for comparing volume censoring methods. Finally, we develop and validate quantitative methods for determining dataset-specific optimal volume censoring parameters prior to the final analysis of a dataset, and provide straightforward recommendations and code for all investigators to apply this optimized approach to their own RSFC datasets.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Artefatos , Conectoma/normas , Movimentos da Cabeça/fisiologia , Humanos , Imageamento por Ressonância Magnética/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...